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Abstract. We study a one-dimensional disordered solid-on-solid model in which neighboring columns are
shifted by quenched random phases. The static height-difference correlation function displays a minimum
at a nonzero temperature. The model is equipped with volume-conserving surface diffusion dynamics,
including a possible bias due to an electromigration force. In the case of Arrhenius jump rates a continuum
equation for the evolution of macroscopic profiles is derived and confirmed by direct simulation. Dynamic
surface fluctuations are investigated using simulations and phenomenological Langevin equations. In these
equations the quenched disorder appears in the form of time-independent random forces. The disorder does
not qualitatively change the roughening dynamics of near-equilibrium surfaces, but in the case of biased
surface diffusion with Metropolis rates it induces a new roughening mechanism, which leads to an increase
of the surface width as W ∼ t1/4.

PACS. 68.35.Fx Diffusion; interface formation – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 61.43.Dq Amorphous semiconductors, metals, and alloys

1 Introduction and outline

At temperatures not too close to the melting point, solid
surfaces relax towards equilibrium primarily through sur-
face self-diffusion [1]. As a consequence, surface diffusion
plays a central role in the morphological evolution of sur-
faces also far from equilibrium, because it provides the
dominant smoothening mechanism counteracting the de-
stabilizing nonequilibrium fluxes. The activation energy
for surface diffusion therefore governs the temperature de-
pendence of the characteristic length and time scales of
diverse morphological phenomena such as ripples induced
by ion sputtering [2] and electromigration-induced shape
transitions of voids in thin films [3].

Microscopic approaches to surface diffusion typically
consider the migration of adsorbed atoms (adatoms) on a
perfect crystalline surface composed of atomically flat ter-
races and monoatomic steps [4]. Much less appears to be
known about diffusion on amorphous surfaces [5], despite
the fact that the role of surface diffusion in the large-scale
evolution of amorphous films is well documented [2,6,7].
Conceptually, self-diffusion on amorphous surfaces is an
intriguing problem in that it adds to the rich phenomenol-
ogy of diffusion in a disordered environment [8] the addi-
tional complication that the environment is built up of
the diffusing species, and hence evolves in response to the
diffusion process [9].
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In this paper we explore some aspects of diffu-
sion on amorphous surfaces in the framework of the
one-dimensional phase-disordered solid-on-solid (DSOS)
model [10–12]. The choice of this – clearly oversimpli-
fied – model is motivated by our interest in establishing a
reasonably stringent connection between microscopic dy-
namics and macroscopic evolution, which is a very hard
problem for more realistic models. The DSOS model in-
cludes structural disorder only in the direction perpendic-
ular to the surface, while maintaining an ordered lattice
along the surface. Its equilibrium properties are governed
by the Hamiltonian

HDSOS = K
∑
i

|hi + φi − hi−1 − φi−1|, (1)

where K > 0 is the bond energy divided by kBT , the
hi are integer height variables defined above the points i
of the one-dimensional substrate lattice and the phases φi
are independent random variables uniformly distributed in
[−1/2, 1/2]. The φi describe the random offsets between
neighboring columns of the two-dimensional solid (see
Fig. 1). They introduce quenched disorder into the model:
thermodynamic quantities are computed for a fixed con-
figuration of phases, and subsequently a disorder average
is performed.

The near-equilibrium behavior of the two-dimensional
DSOS model and its continuum analog, the phase-
disordered sine-Gordon model, has been extensively stud-
ied in the past [11,13–15]. It displays a glass transi-
tion connecting a conventionally rough high-temperature
phase to a “superrough” low temperature phase, which
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Fig. 1. Illustration of the one-dimensional phase-disordered
SOS model with surface diffusion dynamics.

replaces the roughening transition of the pure SOS model.
In the one-dimensional case no such transition occurs.
However, as we will show in Section 2, the surface rough-
ness displays a minimum at a nonzero temperature, which
marks in a similar way the transition from the entrop-
ically dominated high-temperature regime to disorder-
dominated low temperature behavior.

In Section 3 the DSOS model is equipped with a vol-
ume-conserving dynamics which allows the topmost parti-
cle in each column to hop to the neighboring columns with
rates satisfying detailed balance with respect to HDSOS.
The large scale dynamics of the surface is then governed
by a continuum equation of the form [1]

∂h

∂t
= − ∂

∂x
σ
∂

∂x
γ̂
∂2h

∂x2
, (2)

where h(x, t) describes the surface profile and the proper-
ties of the microscopic model enter in the surface stiffness
γ̂ and the adatom mobility σ, both of which are (in gen-
eral) functions of the local surface slope ∇h = ∂h/∂x.
In [16] an exact derivation of (2) from the microscopic dy-
namics was carried out for the ordered SOS model. In Sec-
tion 3 this procedure is adapted to the disordered model,
and the validity of the continuum equation (2) (with ap-
propriately disorder averaged stiffness and mobility) is
demonstrated through simulations of surface profile re-
laxation.

In Section 4 the surface is driven out of equilibrium
by imposing a bias on the surface diffusion jumps. Phys-
ically such a bias can be thought to arise from an elec-
tric bulk current, which induces electromigration of sur-
face atoms [17,18]. Previous studies of the ordered system
have shown that electromigration-induced mass transport
stabilizes or destabilizes the surface depending on the rel-
ative orientation of driving force and surface slope [19,20].
Here we focus on the case of stabilization. In the absence
of disorder the bias then completely suppresses the ther-
mal surface roughness, such that the width W of a surface
of length L becomes independent of L [19] (for a one-
dimensional equilibrium surface W ∼ L1/2).

This behavior changes qualitatively in the presence of
disorder. The disorder roughens the surface such that in
the stationary state W ∼ L1/2, while the temporal rough-
ness buildup from a flat initial condition follows the power
law W ∼ t1/4, faster than the corresponding equilibrium
behavior W ∼ t1/8 [16]. The origin of this novel effect is a
quenched random contribution to the adatom mobility σ

appearing in (2). Together with the external driving force
it gives rise to a quenched random current. In the steady
state the spatial variations of the random current must
be compensated by chemical potential gradients, which
implies a corresponding deformation of the surface.

Similar large scale effects of quenched random mo-
bilities have been discussed previously in different con-
texts [12,21,22], but in the present model the behavior
appears to be particularly simple and clearcut. The rough-
ening dynamics can be quantitatively described by a linear
continuum theory, and the steady state surface deforma-
tion can be predicted directly from the microscopic dis-
order configuration, at least for temperatures which are
not too low. The paper closes with some conclusions in
Section 5.

2 Static properties

The identification of the quantities which appear in the
continuum equation (2) requires some preliminary work,
namely the calculation of equilibrium averages (such as
the stiffness γ̂) at fixed surface inclination. This is done
most conveniently in a grand canonical scheme, where a
term involving a site-dependent chemical potential µi is
added to the Hamiltonian (1) [16]. The total energy then
reads

H = HDSOS −
∑
i

µi(hi + φi)

= K
∑
i

|ui +∆i| −
∑
i

mi(ui +∆i), (3)

where ui = hi−hi−1 is (the integer part of) the local slope,
∆i = φi − φi−1 is the random phase shift between the
neighboring columns, and the slope chemical potential mi

is related to the standard chemical potential through µi =
−(mi−mi−1). As defined, the ∆i display nearest neighbor
correlations. However since the model is invariant under
arbitrary local integer shifts of the ∆i, a transformation
can be found which replaces them by uncorrelated random
variables uniformly distributed in (−1/2, 1/2) [23].

Since (3) describes a system of noninteracting slope
variables, it is straightforward to compute the partition
function and to obtain moments of the local slope ui by
taking derivatives with respect to mi. In the following we
will need the thermal average of the slope 〈ui〉 and its
variance

〈u2
i 〉 − 〈ui〉2 =

∂

∂mi
〈ui〉, (4)

both of which are functions of mi and ∆i; explicit expres-
sions can be found in [23].

2.1 Disorder-averaged stiffness

The surface stiffness of the ordered SOS model is ob-
tained [16] by taking the continuum limit of the relations
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ui = hi−hi−1 and µi = −(mi−mi−1) and using the chain
rule, which yields

µ(x) = −∂m
∂x

= −dm
du

∂u

∂x
= −

(
du
dm

)−1
∂2h

∂x2
= −γ̂ ∂

2h

∂x2
,

(5)

and identifies the stiffness with the inverse of the vari-
ance of the slope. Clearly this approach requires that for
a slowly varying surface (or slope) profile also the slope
chemical potential m is slowly varying. In the presence
of phase disorder this is no longer true due to the addi-
tional dependence on the random shifts ∆i. The relation
between u and m therefore has to be smoothened by per-
forming the disorder average before taking the continuum
limit. The macroscopic stiffness of the DSOS model is then
given by

γ̂ =

(
d〈u〉
dm

)−1

, (6)

where the overbar implies disorder averaging.
According to (6), the stiffness is the inverse of the

disorder averaged slope variance. Alternatively one might
consider defining it as the disorder average of the inverse
of the variance. The two quantities differ considerably at
low temperatures [23]. As we will show in Section 3, sim-
ulations of profile relaxation allow us to unambiguously
decide in favor of the definition (6).

The explicit evaluation yields the expressions

〈u〉(m) =
1

2K

(
K sinhm+m sinhK

coshK − coshm

)
(7)

and

γ̂
−1

(m)

=
K(m coshK−1)+sinhK(coshK−coshm+m sinhm)

2K(coshK−coshm)2
,

(8)

both of which hold for |m| ≤ K. Together equations (7, 8)
define a parametric representation of γ̂(u). The tempera-
ture dependence of the stiffness differs qualitatively from
that of the ordered SOS model (Fig. 2). In particular, for
m = 0 (u = 0) it behaves as γ̂ ≈ 2K for K → ∞ in
contrast to the exponential divergence γ̂SOS ∼ eK in the
ordered case. In the high temperature regime, γ̂ converges
to γ̂SOS. The inclination dependence of the stiffness is qual-
itatively similar both in the ordered and disordered case,
γ̂ → u−2 for u → ∞, but with a broader maximum at
u = 0 for the disordered model in the low temperature
regime.

2.2 Height difference correlation function

In the SOS model the height difference correlation
function

C(r) :=
1
L

L−1∑
j=0

〈(hj+r − hj)2〉 (9)
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Fig. 2. Temperature dependence of the coefficient of the
height-difference correlation function C(r)/|r| in the DSOS
model (full line) and the SOS model (dashed line) at zero mean
slope (m = 0). The dotted line is the inverse stiffness (γ̂)−1 of
the disordered model. In the SOS model C(r)/|r| = γ̂−1.

is directly connected to the stiffness, since C(r) = |r|/γ̂.
In the disordered system one has additional contributions
which are due to the random phase shifts, and

C(r) = (〈u2〉+ 2〈u〉∆+∆2)|r|. (10)

The last term ∆2 = 1/12 reflects the roughness of the
ground state of (1) [10] and is the only one that survives at
zero temperature. For u = 0 the first term can be identified
with the inverse stiffness, while the second, mixed term is
given by the integral

〈u〉∆ = −2
∫ 1/2

0

d∆
∆ sinhK∆

sinhK(1−∆) + sinhK∆
· (11)

It is negative, which shows that the system tries to com-
pensate the imposed phase shift through a corresponding
inclination of the opposite sign in order to minimize its
free energy. Evaluation of the integral for large K yields
〈u〉∆ ≈ −(ln 2/2)K−1, hence at low temperatures the en-
tropic smoothening of the quenched disorder dominates
over the entropic roughening, and the height-difference
correlation function decreases with increasing tempera-
ture as C(r)/|r| ≈ 1/12 − (ln 2 − 1/2)K−1. This regime
terminates in a minimum at a temperature K−1 ≈ 0.1.
With further increase of the temperature the disorder
becomes decreasingly significant and the correlations ap-
proach those of the SOS model (Fig. 2).

3 Relaxation to equilibrium

3.1 Surface diffusion dynamics

Surface diffusion is introduced into the DSOS model by
specifying the rate at which the topmost particle in a col-
umn can move to the neighboring sites. Jumps are at-
tempted to the right with probability p and to the left
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with probability 1 − p. In equilibrium p = 1/2, while in
the presence of an external field E the bias is determined
through a local detailed balance relation [24] of the form

p/(1− p) = eE . (12)

An attempted jump i → j is accepted with a probability
Γij , which has to be chosen such that detailed balance with
respect toHDSOS is satisfied when E = 0. Two choices will
be considered in this paper.

For Arrhenius dynamics the jump rate is

Γij = e−2Kni , (13)

where ni is the lateral coordination number of the atom
at its initial site i. In the SOS model ni = 0, 1 or 2,
while in the disordered case ni is a real number between 0
and 2 which measures the length of the vertical edges that
the square representing the atom shares with its neighbors
(Fig. 1); equivalently, 2K(ni−1) is the evaporation energy
required to remove a particle from column i [16].

An artificial feature of Arrhenius dynamics is that the
jump rate is independent of the environment of the tar-
get site of the move. In this sense Metropolis dynamics
defined by

Γij = min[1, e−∆H
ij
DSOS ] (14)

is more realistic, because the difference in the total surface
energy ∆HijDSOS before and after the jump depends on
both sites involved.

3.2 Adatom mobility and profile relaxation

On scales very much larger than the lattice constant the
relaxation of the DSOS surface towards equilibrium can
be described through the continuum equation (2). The
thermodynamic driving force is provided by the surface
stiffness, which has already been identified in the previous
section. The adatom mobility σ can be formally defined
through the excess mass current JE caused by an external
bias field E in the zero field limit, as [16,25]

σ = lim
E→0

E−1JE . (15)

On the level of linear response a Green-Kubo formula for
σ is obtained [25], which involves the thermally averaged
jump rate and a correction term given by a space-time in-
tegral over the stationary current-current correlation func-
tion. For Arrhenius dynamics the correction term vanishes
identically [16]. Moreover the thermal average of the jump
rate can be carried out in the same way as for the ordered
system [16,23], which leads to the result

σArr =
1
2
〈e−2Kni〉 =

1
2

e−2K (16)

independent of the local phase shift ∆i, and independent
of the surface slope. Since the mobility is the same for all
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Fig. 3. Flattening of an initially sinusoidal profile after 109
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Fig. 4. Time evolution of the peak-to-valley amplitude of the
profile shown in Figure 3. The simulation (diamonds) agrees
with the numerical integration using the stiffness definition (6)
(full line) and rules out the stiffness obtained as the disorder
average of the inverse slope variance (dashed line). The error
bars indicate statistical errors from 10 independent runs.

configurations of phases, a disorder average is not neces-
sary.

With the exact expressions (16) for the mobility and
(7, 8) for the stiffness, the continuum equation (2) is fully
determined for Arrhenius dynamics, and can be used to
predict the large scale evolution of surface profiles in the
DSOS model. In Figure 3 this is illustrated for the re-
laxation of an initially sinusoidal profile. An impressive
agreement is reached, without any adjustable parameters.
A more sensitive check is provided by the time evolution
of the peak-to-valley amplitude (hmax − hmin)/2 (Fig. 4).
This figure clearly demonstrates the correctness of the dis-
order average leading to the expression (8) for the surface
stiffness, and rules out the alternative averaging procedure
mentioned in Section 2.1.
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Fig. 5. Crosses show the inclination dependence of the
Metropolis mobility, as determined from the excess mass cur-
rent. The lines show the upper bound σ+ with and without
disorder. The dimensionless inverse temperature is K = 2.

To determine the adatom mobility for the choice of
Metropolis dynamics one has to rely on simulation, be-
cause a direct evaluation is ruled out by the non-vanishing
Green-Kubo integral. Without further investigations one
can only conclude that the average of the jump rate with
respect to the thermal equilibrium state of the DSOS
model,

σ+
i =

1
2
〈Γii+1〉, (17)

represents an upper bound on the true mobility, because
the Green-Kubo integral has a definite sign. Correspond-
ingly σ+ is an upper bound on the disorder averaged mo-
bility. The most direct method for the numerical determi-
nation of σ is provided by the basic definition (15) of the
mobility through the excess mass current. Counting the
difference of particle hops to the left and right and plot-
ting it versus the field E yields for a sufficiently small field
the expected linear behavior. Figure 5 shows the results
for the Metropolis mobility obtained using this method for
several inclinations u, compared with the upper bound σ+

in the ordered and disordered case. Several remarks are in
order: (i) Admittedly the upper bound is not exceeded,
but it is a poor approximation to the true mobility (for
higher temperatures it is more useful). (ii) The differences
between the system with and without disorder are small
(at least with respect to the upper bound). (iii) There is
no fixed relation between mobilities of the ordered and the
disordered system. The DSOS mobility is larger for u ≈ 0
but smaller elsewhere.

3.3 Roughening dynamics

On mesoscopic scales the relaxation into equilibrium start-
ing from a nonequilibrium initial condition, such as hi ≡ 0,
is associated with the dynamic buildup of the roughness
discussed in Section 2.2. This is most conveniently mod-
eled through a Langevin equation obtained by linearizing
the continuum equation (2) around the macroscopically

flat profile and adding appropriate noise terms [16]. In
addition to a fluctuating current jF(x, t) describing the
hopping of adatoms, for the DSOS model one expects also
a spatially random, time-independent term describing the
quenched random phases [12]. Without loss of generality
this can be introduced through a Gaussian quenched ran-
dom chemical potential µR(x). The full Langevin equation
then reads

∂h

∂t
= −σ ∂2

∂x2

(
γ̂
∂2h

∂x2
− µR(x)

)
− ∂

∂x
jF(x, t), (18)

where σ and γ̂ are constants evaluated at the macroscop-
ically imposed slope, and jF(x, t) is white noise in space
and time. Thermal and disorder averages now correspond
to averaging with respect to jF and µR, respectively.

The statistics of µR(x) is fixed by noting that the ther-
mally averaged equilibrium height profile of the DSOS
model 〈h(x, t)〉 has the same qualitative roughness prop-
erties as an equilibrium interface, since the thermally av-
erage slopes 〈ui〉 are uniquely determined by the phase
shifts ∆i, which are independent at different sites. Thus on
large scales ∂〈h(x, t)〉/∂x has the statistics of spatial white
noise. Within the Langevin description of equation (18)
the thermally averaged profile is obtained by setting the
total chemical potential µ + µR = −γ̂∂2h/∂x2 + µR to
zero. It follows that µR has zero mean, and its covariance
function is of the form

µR(x)µR(x′) = −Dµ
∂2

∂x2
δ(x− x′), (19)

where the amplitude Dµ can in principle be computed
from the formulae given in Section 2.

The solution of (18) is straightforward by Fourier
transformation. One finds that the two noise sources
jF and µR give comparable contributions to the surface
width, which grows as W (t) ∼ t1/8 like in the ordered
system [16]. The quenched disorder does not qualitatively
change the roughening behavior. This is confirmed by nu-
merical measurements of the surface width, which for the
DSOS model is defined by

W 2 =
1
L

L∑
i=1

(hi + φi − h)2,

h ≡ 1
L

L∑
i=1

hi + φi. (20)

The data displayed in Figure 6 show that the prefactor of
the t1/4-law is generally increased by the disorder. This is
plausible in view of the expression for the surface width
obtained in the absence of disorder [16],

W 2(t) ' (2σγ̂)1/4Γ (3/4)
πγ̂

t1/4. (21)

It shows that the prefactor is primarily determined by the
stiffness γ̂, which is reduced by the disorder (see Sect. 2).
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Fig. 6. Roughening dynamics of an initially flat surface. The
figure shows simulation data for the surface width obtained
using Arrhenius and Metropolis dynamics in the presence and
absence of disorder. The full line indicates the predicted t1/4-
power law.

4 Driven surface diffusion

4.1 Random mobility and disorder-induced roughening

While in the preceding section the infinitesimal bias field
E was introduced only as a theoretical device in the def-
inition of the adatom mobility, here we want to examine
the nonequilibrium steady state which is generated by im-
posing a finite bias E > 0 in (12). Provided the bias is not
too strong, the induced additional current can be writ-
ten as JE = σE. Through the dependence of the adatom
mobility on the surface morphology this may couple to
the surface dynamics. As discussed in Section 3, there is
no such dependence in the case of Arrhenius dynamics;
therefore in the following we consider only Metropolis dy-
namics.

In the absence of disorder, the main effect of the field is
obtained by linearizing the corresponding term −∂JE/∂x
appearing on the right hand side of the continuum equa-
tion (2) around a profile of constant slope u. This yields
a second order derivative term −Eσ′(u)∂2h/∂x2, where
σ′(u) = dσ/du. If Eσ′(u) > 0, fluctuations like valleys or
hills are not flattened out but amplified, ending up in a
faceted surface, while for Eσ′(u) < 0 the surface is sta-
bilized by the field [19,20]. While the faceting transition
persists in the DSOS model [23], the more interesting dis-
order effects appear in the stabilizing case, which we now
investigate. For both SOS and DSOS models the stable
regime appears for sufficiently negative slopes [19,20]; in
the following we typically choose a mean slope u = −1,
which is fixed through helical boundary conditions.

In the presence of disorder we expect the random
phases to induce a spatially fluctuating contribution to
the mobility. Microscopically, the mobility at site i de-
pends on three neighboring phase shifts ∆i−1,i,i+1. Nu-
merical investigations of the statistics of the upper bound
(17) indicate that the fluctuations in the mobility are un-
correlated beyond a few lattice constants, and moreover

they depend only weakly on inclination in the parameter
range of interest [23]. We therefore separate the spatial de-
pendence from the inclination dependence, and make the
following ansatz for the adatom mobility in the continuum
description of the driven DSOS model,

σ(∇h, x) = σ̄(∇h) + σR(x). (22)

Here σ̄ denotes the average, space-independent contribu-
tion which appears in the SOS model as well, and σR(x)
is a quenched Gaussian random variable with zero mean
and covariance

σR(x)σR(x′) = Σδ(x− x′). (23)

We have attempted to numerically estimate the ampli-
tude Σ from the variance of the upper bound σ+

i , which
unfortunately gives reasonable results for high tempera-
tures only; in the following Σ will therefore be treated as
a free parameter of the theory.

Collecting all relevant terms, the Langevin equation
describing the surface fluctuations in the field driven SOS
and DSOS models reads

∂h

∂t
= −σ̄¯̂γ

∂4h

∂x4
−Eσ̄′ ∂

2h

∂x2
−E∂σR

∂x
− ∂jF

∂x
. (24)

In the presence of the field-induced second order deriva-
tive term, the quenched random chemical potential µR ap-
pearing in (18) is irrelevant compared to the other noise
sources. Also the first, fourth order derivative term on the
right hand side of (24) is irrelevant for the long wavelength
behavior, however it is needed as a short wavelength reg-
ularization for the ordered case (see below).

If we assume equilibrium statistics for the fluctuating
current jF(x, t), choosing its covariance according to the
fluctuation-dissipation theorem as [16]

〈jF(x, t)jF(x′, t′)〉 = 2σ̄δ(x− x′)δ(t− t′), (25)

the solution of (24) yields the expression

W 2(t) ' (2−
√

2)Σ

√
E

π|σ̄′|3 t
1/2 +

1
2¯̂γ

√
σ̄¯̂γ
|σ̄′|E (26)

for the asymptotic behavior of the surface width.
For the ordered SOS model (Σ = 0, σ̄ = σ, ¯̂γ = γ̂)

the width saturates at a value proportional to E−1/2.
The field suppresses the thermal surface roughness; the
dependence of the saturation width on the surface stiff-
ness γ̂ reflects the role of the fourth order term in (24)
as a short distance regularization. The quenched disorder
destroys the saturation of W , leading to a roughness evo-
lution W ∼ t1/4 which is faster than the t1/8-law of ther-
mal roughening (Sect. 3.3). Due to the non-homogeneous
mobility the field induces a corresponding spatially fluc-
tuating current, which drives the surface into a steady
state with a space-independent current. This is achieved
by building up a certain surface profile which is deter-
mined by the disorder (see Sect. 4.2). Note that the coef-
ficient of the leading t1/2-behavior in (26) is independent
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Fig. 7. Saturation of the surface width for the field-driven
ordered surface of length L = 10 000 at K = 3 and u = −1
for field strength (a) E = 2 and (b) E = 1. In the disordered
system with the same parameters (c) E = 2 and (d) E = 1
the surface roughens at late times. The fits are of the form
a+ bt1/2.
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Fig. 8. Disorder-induced roughening for a large system (L =
105) at field strength E = 0.5, K = 4 and slope u = −1. The
numerical data (curve (b)) are compared to a fit of the form
a + bt1/2 (curve (a)). The inset shows the effective exponent
α(t) defined by W 2(t) = a(t0)tα(t0) in the neighborhood of a
time t0. For late times one expects α→ 1/2.

of both ¯̂γ and σ̄, which shows that the asymptotics of the
width is determined only by the second and third terms
on the right hand side of (24).

Figure 7 shows simulation results for the surface
width1 in the driven SOS and DSOS models. The agree-
ment with the predicted t1/2-law for the disordered case
is very good. The prefactor is expected to be proportional
to E1/2, thus the ratio of the prefactors in the two cases
approximates the value

√
2. Further quantitative compar-

ison with the theory would require a better knowledge of
Σ [23]. The evolution of a much larger system is shown
in Figure 8. Again the excellent agreement supports our
ansatz (22) for the random mobility.

1 Note that in the case of inclined surfaces the mean tilt
has to be subtracted prior to the evaluation of the surface
width (20).
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Fig. 9. Disorder-induced roughening in small systems (L =
500, K = 4, E = 1, u = −1) for two different disorder configu-
rations. 10 independent runs were carried out for each config-
uration. The inset shows the averages over the two sets of runs
together with fits of the form a+ bt1/2.

4.2 Sample-to-sample fluctuations and the steady
state surface profile

For small systems we observed large sample-to-sample
fluctuations of the surface width. In Figure 9 the rough-
ness evolution is shown for two different disorder configu-
rations in a system of size L = 500. The saturation of the
surface width at long times is a finite-size effect; the solu-
tion of the Langevin equation (24) shows that the width
saturates at a valueW∞(L) =

√
ΣL/12|σ̄′|2. The more re-

markable feature of the data shown in Figure 9 is that the
fluctuations between different runs in the same disorder
environment are much smaller than the sample-to-sample
fluctuations between the two different environments. In-
deed, when considering the height difference between two
different runs in the same environment, the random mobil-
ity term in (24) cancels and the equation reduces to that
for the ordered, driven SOS model, which has bounded
surface fluctuations.

To understand in more detail which features of the
phase disorder configuration determine the roughness evo-
lution, it is useful to compare the steady state height pro-
files which are established for times beyond the saturation
time (Fig. 10). A Fourier analysis shows that for the dis-
order configuration I (upper panel) the dominant Fourier
mode is q = 2π/L, while in configuration II (lower panel)
the mode q = 4π/L dominates. This means that in config-
uration II the typical distance over which particles have
to be moved to build up the steady state profile is smaller,
and therefore the roughening dynamics is faster. On the
other hand in configuration I the long wavelength modes
have a larger amplitude, and correspondingly the satura-
tion value W 2

∞ is larger in that case. Thus the main qual-
itative features of the different roughness evolutions seen
in Figure 9 can be explained by inspection of the steady
state profile.

Since the steady state height profile is uniquely deter-
mined by the random phases, it would be highly desirable
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Fig. 10. Stationary surface profiles for the two disorder config-
urations of Figure 9. The smooth curves show the combination
of the lowest Fourier modes with q = 2π/L and q = 4π/L.

to be able to compute it directly without having to sim-
ulate the time-dependent process. Inspired by a related
approach used in a recent study of disordered exclusion
models [26], we have developed an approximate scheme
for the calculation of the steady state profiled based on
the following rate equations for the thermally averaged
local slope in the DSOS model:

d
dt
〈ui(t)〉 = 〈p(2Γi−1,i − Γi,i+1 − Γi−2,i−1)〉

+ 〈(1− p)(Γi+1,i + Γi−1,i−2 − 2Γi,i−1)〉. (27)

If the averages 〈·〉 were taken with respect to the (un-
known) true nonequilibrium steady state of the system,
equation (27) would be exact. Our approximation con-
sists of using instead the thermally averaged equilibrium
jump rates

〈Γi,i+1〉 =
1
Z

∞∑
ui,ui+1,
ui+2=−∞

exp{−H}min(1, exp{−∆H}),

(28)

where Z is the partial partition function for the three
neighboring slope variables and ∆H is the energy change
associated with the particle hopping. Both H and ∆H de-
pend on the slope chemical potentials mi,mi+1,mi+2 and
the disorder parameters ∆i,∆i+1,∆i+2 of three neighbor-
ing sites. The functional relation between 〈ui〉 and mi at
given ∆i can be inverted numerically, thus (28) can be
written in the form

〈Γi,i+1〉 = F (∆j , 〈uj〉|j = i− 2, . . . , i+ 2). (29)

In this approximation equation (27) reduces to a system of
L coupled, non-linear equations for the expectation values
of ui, which can be solved by iteration. The initial profile
is chosen as the constant slope configuration.
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Fig. 11. Comparison of stationary profiles obtained by direct
simulations and by numerical solution of the approximate rate
equations for different temperatures. In all cases L = 50, E = 1
and u = −1.

In Figure 11 the approximate profiles are compared to
those obtained from direct simulation. The agreement is
quite satisfactory for K = 1.00, becoming worse with de-
creasing temperature. For K = 1.50 and K = 2.00 there
are still local similarities, but also stretches along which
the slope of the approximate profile seems to be the neg-
ative of the true one. We have checked that the expla-
nation for this curious phenomenon does not lie in the
existence of multiple, symmetry-related steady state solu-
tions of equations (27): Even if the numerical solution of
the rate equations is started with the final profile of the
direct simulation, one ends up in exactly the same final
state.

5 Conclusions

In this paper we have explored the effects of a certain type
of structural disorder on the behavior of one-dimensional
SOS surfaces. While the static roughness of the model
could be treated exactly, the dynamic fluctuations were
analyzed in the framework of phenomenological Langevin



U. Börner and J. Krug: Diffusion and electromigration on disordered surfaces 353

equations. In these equations (Eqs. (18, 24)) the disorder
introduces noise terms – chemical potentials and currents
– which are random in space but independent of time. In
the absence of a driving field the quenched disorder was
found to be marginal, in the sense that it leads to the
same kind of roughening dynamics as the time-dependent
fluctuations in the ordered system, while the combination
of random mobilities and a driving field was shown to
induce a novel roughening mechanism.

Similar Langevin equations with quenched random for-
ces have been extensively studied in the context of charge
density waves, driven flux line lattices and related con-
densed matter systems [11,12,21,22]. Our problem is sim-
pler in that easily solvable linear equations suffice for an
accurate description of the behavior, because no relevant
nonlinearities exist.

An interesting extension of the present work would be
to consider the combination of deposition and surface dif-
fusion in the DSOS model. Similar to the behavior in the
ordered SOS model [27], the deposition flux may induce
surface currents which however in the disordered system
would be random in space. Possibly such effects could con-
tribute to the morphological instability which has been
observed in the growth of amorphous thin films [7].

Thanks are due to Andy Zangwill for asking a question which
motivated this work. The support of DFG within SFB237 Un-
ordnung und grosse Fluktuationen is gratefully acknowledged.
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